3.591 \(\int \frac{1}{\sqrt{a+a \sin (e+f x)} \sqrt{c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=79 \[ -\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c-d} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a} \sqrt{c+d \sin (e+f x)}}\right )}{\sqrt{a} f \sqrt{c-d}} \]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[c - d]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x
]])])/(Sqrt[a]*Sqrt[c - d]*f))

________________________________________________________________________________________

Rubi [A]  time = 0.107281, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.069, Rules used = {2782, 208} \[ -\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c-d} \cos (e+f x)}{\sqrt{2} \sqrt{a \sin (e+f x)+a} \sqrt{c+d \sin (e+f x)}}\right )}{\sqrt{a} f \sqrt{c-d}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[c - d]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x
]])])/(Sqrt[a]*Sqrt[c - d]*f))

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+a \sin (e+f x)} \sqrt{c+d \sin (e+f x)}} \, dx &=-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{2 a^2-(a c-a d) x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)} \sqrt{c+d \sin (e+f x)}}\right )}{f}\\ &=-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c-d} \cos (e+f x)}{\sqrt{2} \sqrt{a+a \sin (e+f x)} \sqrt{c+d \sin (e+f x)}}\right )}{\sqrt{a} \sqrt{c-d} f}\\ \end{align*}

Mathematica [B]  time = 4.07253, size = 283, normalized size = 3.58 \[ \frac{\log \left (\tan \left (\frac{1}{2} (e+f x)\right )+1\right )-\log \left ((d-c) \tan \left (\frac{1}{2} (e+f x)\right )+2 \sqrt{c-d} \sqrt{\frac{1}{\cos (e+f x)+1}} \sqrt{c+d \sin (e+f x)}+c-d\right )}{f \sqrt{a (\sin (e+f x)+1)} \sqrt{c+d \sin (e+f x)} \left (\frac{\sec ^2\left (\frac{1}{2} (e+f x)\right )}{2 \tan \left (\frac{1}{2} (e+f x)\right )+2}-\frac{\frac{\sqrt{c-d} \left (\frac{1}{\cos (e+f x)+1}\right )^{3/2} (c \sin (e+f x)+d \cos (e+f x)+d)}{\sqrt{c+d \sin (e+f x)}}-\frac{1}{2} (c-d) \sec ^2\left (\frac{1}{2} (e+f x)\right )}{(d-c) \tan \left (\frac{1}{2} (e+f x)\right )+2 \sqrt{c-d} \sqrt{\frac{1}{\cos (e+f x)+1}} \sqrt{c+d \sin (e+f x)}+c-d}\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(Log[1 + Tan[(e + f*x)/2]] - Log[c - d + 2*Sqrt[c - d]*Sqrt[(1 + Cos[e + f*x])^(-1)]*Sqrt[c + d*Sin[e + f*x]]
+ (-c + d)*Tan[(e + f*x)/2]])/(f*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c + d*Sin[e + f*x]]*(Sec[(e + f*x)/2]^2/(2 +
2*Tan[(e + f*x)/2]) - (-((c - d)*Sec[(e + f*x)/2]^2)/2 + (Sqrt[c - d]*((1 + Cos[e + f*x])^(-1))^(3/2)*(d + d*C
os[e + f*x] + c*Sin[e + f*x]))/Sqrt[c + d*Sin[e + f*x]])/(c - d + 2*Sqrt[c - d]*Sqrt[(1 + Cos[e + f*x])^(-1)]*
Sqrt[c + d*Sin[e + f*x]] + (-c + d)*Tan[(e + f*x)/2])))

________________________________________________________________________________________

Maple [B]  time = 0.139, size = 191, normalized size = 2.4 \begin{align*} -{\frac{ \left ( 1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) \sqrt{2}}{f\sin \left ( fx+e \right ) }\sqrt{c+d\sin \left ( fx+e \right ) }\ln \left ( 2\,{\frac{1}{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) } \left ( \sqrt{2\,c-2\,d}\sqrt{2}\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}\sin \left ( fx+e \right ) +c\sin \left ( fx+e \right ) -d\sin \left ( fx+e \right ) +c\cos \left ( fx+e \right ) -d\cos \left ( fx+e \right ) -c+d \right ) } \right ){\frac{1}{\sqrt{2\,c-2\,d}}}{\frac{1}{\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }}}{\frac{1}{\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x)

[Out]

-1/f/(2*c-2*d)^(1/2)*(1-cos(f*x+e)+sin(f*x+e))*(c+d*sin(f*x+e))^(1/2)*ln(2*((2*c-2*d)^(1/2)*2^(1/2)*((c+d*sin(
f*x+e))/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+c*sin(f*x+e)-d*sin(f*x+e)+c*cos(f*x+e)-d*cos(f*x+e)-c+d)/(1-cos(f*x+e
)+sin(f*x+e)))/(a*(1+sin(f*x+e)))^(1/2)/sin(f*x+e)*2^(1/2)/((c+d*sin(f*x+e))/(cos(f*x+e)+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sin \left (f x + e\right ) + a} \sqrt{d \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.59621, size = 1199, normalized size = 15.18 \begin{align*} \left [\frac{\sqrt{2} \log \left (\frac{{\left (c^{2} - 14 \, c d + 17 \, d^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (13 \, c^{2} - 22 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right )^{2} - \frac{4 \, \sqrt{2}{\left ({\left (c^{2} - 4 \, c d + 3 \, d^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \, c^{2} + 8 \, c d - 4 \, d^{2} -{\left (3 \, c^{2} - 4 \, c d + d^{2}\right )} \cos \left (f x + e\right ) +{\left (4 \, c^{2} - 8 \, c d + 4 \, d^{2} +{\left (c^{2} - 4 \, c d + 3 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{d \sin \left (f x + e\right ) + c}}{\sqrt{a c - a d}} - 4 \, c^{2} - 8 \, c d - 4 \, d^{2} - 2 \,{\left (9 \, c^{2} - 14 \, c d + 9 \, d^{2}\right )} \cos \left (f x + e\right ) +{\left ({\left (c^{2} - 14 \, c d + 17 \, d^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \, c^{2} - 8 \, c d - 4 \, d^{2} + 2 \,{\left (7 \, c^{2} - 18 \, c d + 7 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3} + 3 \, \cos \left (f x + e\right )^{2} +{\left (\cos \left (f x + e\right )^{2} - 2 \, \cos \left (f x + e\right ) - 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 4}\right )}{4 \, \sqrt{a c - a d} f}, \frac{\sqrt{2} \sqrt{-\frac{1}{a c - a d}} \arctan \left (-\frac{\sqrt{2} \sqrt{a \sin \left (f x + e\right ) + a}{\left ({\left (c - 3 \, d\right )} \sin \left (f x + e\right ) - 3 \, c + d\right )} \sqrt{d \sin \left (f x + e\right ) + c} \sqrt{-\frac{1}{a c - a d}}}{4 \,{\left (d \cos \left (f x + e\right ) \sin \left (f x + e\right ) + c \cos \left (f x + e\right )\right )}}\right )}{2 \, f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(2)*log(((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^3 - (13*c^2 - 22*c*d - 3*d^2)*cos(f*x + e)^2 - 4*sqrt(2
)*((c^2 - 4*c*d + 3*d^2)*cos(f*x + e)^2 - 4*c^2 + 8*c*d - 4*d^2 - (3*c^2 - 4*c*d + d^2)*cos(f*x + e) + (4*c^2
- 8*c*d + 4*d^2 + (c^2 - 4*c*d + 3*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x +
e) + c)/sqrt(a*c - a*d) - 4*c^2 - 8*c*d - 4*d^2 - 2*(9*c^2 - 14*c*d + 9*d^2)*cos(f*x + e) + ((c^2 - 14*c*d + 1
7*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4*d^2 + 2*(7*c^2 - 18*c*d + 7*d^2)*cos(f*x + e))*sin(f*x + e))/(cos(f*
x + e)^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)^2 - 2*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4))/(sqrt(
a*c - a*d)*f), 1/2*sqrt(2)*sqrt(-1/(a*c - a*d))*arctan(-1/4*sqrt(2)*sqrt(a*sin(f*x + e) + a)*((c - 3*d)*sin(f*
x + e) - 3*c + d)*sqrt(d*sin(f*x + e) + c)*sqrt(-1/(a*c - a*d))/(d*cos(f*x + e)*sin(f*x + e) + c*cos(f*x + e))
)/f]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )} \sqrt{c + d \sin{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sin(e + f*x) + 1))*sqrt(c + d*sin(e + f*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sin \left (f x + e\right ) + a} \sqrt{d \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)